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UNIT III 

Multiple Random Variables and Operations on Multiple Random Variables 

 
Multiple Random Variables: 

 

 Joint Distribution Function and Properties 

 Joint density Function and Properties 

 Marginal Distribution and density Functions 

 Conditional Distribution and density Functions 

 Statistical Independence 

 Distribution and density functions of Sum of Two Random Variables  
 

Operations on Multiple Random Variables: 

 

 Expected Value of a Function of Random Variables 

 Joint Moments about the Origin 

 Joint Central Moments 

 Joint Characteristic Functions 

 Jointly  Gaussian  Random  Variables:  Two  Random  Variables  case   
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MULTIPLE RANDOM VARIABLES 

Multiple Random Variables 

 
In many applications we have to deal with more than two random variables. For example, 

in the navigation problem, the position of a space craft is represented by three random variables 
denoting the x, y and z coordinates. The noise affecting the R, G, B channels of color video may 
be represented by three random variables. In such situations, it is convenient to define the vector-
valued random variables where each component of the vector is a random variable. 

 
In this lecture, we extend the concepts of joint random variables to the case of multiple 

random variables. A generalized analysis will be presented for random variables defined on the 
same sample space. 

 

Example1: Suppose we are interested in studying the height and weight of the students in a 

class. We can define the joint RV ( , )X Y  where  X  represents height and Y represents the 

weight. 

 

Example 2      Suppose in a communication system X    is    the transmitted signal and   Y  is the    

corresponding noisy received signal.  Then ( , )X Y  is a joint random variable. 

 

Joint Probability Distribution Function: 
 

 Recall the definition of the distribution of a single random variable. The event  
{ }X x

 was used 

to define the probability distribution function 
( ).XF x

 Given  
( ),XF x

 we can find the probability of any 

event involving the random variable. Similarly, for two random variables X and ,Y  the event  

{ , } { } { }X x Y y X x Y y       is considered as the representative event. 

  
The probability 

2{ , } ( , )P X x Y y x y    is called the joint distribution function of the 

random variables X and Y  and denoted by ).,(, yxF YX  

Properties of Joint Probability Distribution Function: 
 

The joint CDF satisfies the following properties: 

1. FX(x)=FXY(x,∞) , for any x (marginal CDF of X); 

Proof: 

 

Similarly  ).,()( yFyF XYY   

 

2. FY(y)=FXY(∞,y), for any y (marginal CDF of Y); 

3. FXY(∞,∞)=1; 

4. FXY(−∞,y)=FXY(x,−∞)=0; 

5. P(x1<X≤x2,y1<Y≤y2)= FXY(x2,y2)−FXY(x1,y2)−FXY(x2,y1)+FXY(x1,y1); 

6. if X and Y are independent, then FXY(x,y)=FX(x)FY(y) 

7. , 1 1 , 2 2 1 2 1 2( , ) ( , )  if   and  yX Y X YF x y F x y x x y    

Proof: 

   

   { } { } { }

( ) { } { , } ( , )
X XY

X x X x Y

F x P X x P X x Y F x

     

        
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: 

1 2 1 2

1 1 2 2

1 1 2 2

, 1 1 , 2 2

If  and   y ,

{ , } { , }

{ , } { , }

( , ) ( , )X Y X Y

x x y

X x Y y X x Y y

P X x Y y P X x Y y

F x y F x y

 

    

     

 

 

 

                 Example1: 
 

                  Consider two jointly distributed random variables X  and Y with the joint CDF 

                       

2

,

(1 )(1 )  0, 0
( , )

0                        otherwise   

x y

X Y

e e x y
F x y

     
 


 

(a) Find the marginal  CDFs 

(b) Find the probability  {1 2,   1 2}P X Y     

Solution:  

                 (a)              

2

,

,

1     0
( ) lim ( , )

0             elsewhere

1     y 0
( ) lim ( , )

0             elsewhere

x

X X Y
y

y

Y X Y
x

e x
F x F x y

e
F y F x y









  
  



  
  



 

                          (b)        

, , , ,

4 2 2 1 2 2 4 1

{1 2,   1 2} (2,2) (1,1) (1,2) (2,1)

                                       (1 )(1 ) (1 )(1 ) (1 )(1 ) (1 )(1 )

                                        =0.02

X Y X Y X Y X YP X Y F F F F

e e e e e e e e       

       

           
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         Jointly distributed discrete random variables 
 

 If  X and Y are   two discrete random variables defined on the same probability space 

( , , )S F P   such that X takes values from the countable subset XR and  Y takes values from the 

countable subset .YR Then the joint random variable ( , )X Y can take values from the countable subset in 

.X YR R   The joint random variable ( , )X Y is  completely specified  by their joint probability mass 

function 

          , ( , ) { | ( ) , ( ) },   ( , ) .X Y X Yp x y P s X s x Y s y x y R R     
 

 
Given , ( , ),X Yp x y  we can determine other probabilities involving the random variables X and .Y  

  

Remark 

 , ( , ) 0 for ( , )X Y X Yp x y x y R R    

 ,
( , )

( , ) 1
X Y

X Y
x y R R

p x y
 

   

 This is because   

,
( , )( , )

( , ) ( { , })

                               = ( )

                               = { | ( ( ), ( )) ( )}

                               = ( ) 1

X YX Y

X Y
x y R Rx y R R

X Y

X Y

p x y P x y

P R R

P s X s Y s R R

P S

  

 



 


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 Marginal Probability Mass Functions:  The probability mass functions ( )Xp x   and  
( )Yp y  are  obtained from the joint probability mass function as follows 

           
,

( ) { }

          = ( , )
Y

X Y

X Y
y R

p x P X x R

p x y


 

  

 

            and similarly 

            ,( ) ( , )
X

Y X Y
x R

p y p x y


   

      These probability mass functions ( )Xp x   and  ( )Yp y  obtained  from the joint probability mass 
functions are called marginal probability mass functions. 

Example Consider the random variables   and X Y  with the joint probability mass function as 

tabulated in Table . The marginal probabilities are as shown in the last column and the last row 
 

 

X
 

Y
 

0 1 2 ( )Yp y
 

0 0.25 0.1 0.15 0.5 

1 0.14 0.35 0.01 0.5 

( )Xp x  
0.39 0.45  

 

 

Joint Probability Density Function 
 

If  X  and Y are   two   continuous random variables and their joint distribution function is continuous 

in both  x  and ,y  then we can define joint probability density function , ( , )X Yf x y by 

2

, ,( , ) ( , ),X Y X Yf x y F x y
x y



 

 provided it exists. 

Clearly , ,( , ) ( , )
yx

X Y X YF x y f u v dvdu
 

  
 

            Properties of Joint Probability Density Function: 
 

 ),(, yxf YX is always a non-negative quantity. That is, 

 

          
2

, ( , ) 0   ( , )X Yf x y x y    

 , ( , ) 1X Yf x y dxdy
 

 

   

 Marginal probability density functions can be defined as 

 
 The probability of any  Borel set B  can be obtained by 

,
( , )

( ) ( , )X Y
x y B

P B f x y dxdy


   

 

82



 
 

Marginal Distribution and density Functions: 
 

The probability distribution functions of random variables X and Y obtained from joint 

distribution function is called ad marginal distribution functions. i.e.            

      FX(x)=FXY(x,∞) , for any x (marginal CDF of X); 

Proof: 

 

Similarly  ).,()( yFyF XYY   

 

The marginal density functions ( )Xf x and ( )Yf y  of two joint RVs  and X Y are given by the 

derivatives of the corresponding marginal distribution functions. Thus  

,

,

,

          ( ) ( )

                   ( , )

                   ( ( , ) )

                   ( , )

and similarly    ( ) ( , )

d
X Xdx

d
Xdx

x
d

X Ydx

X Y

Y X Y

f x F x

F x

f u y dy du

f x y dy

f y f x y dx



 











 

  

 

 

 

 
The marginal CDF and pdf  are same as the CDF and pdf of the concerned single random variable. The 

marginal term simply refers that it is derived from the corresponding joint distribution or density function 

of two or more jointly random variables. 

 

Example2: The joint density function , ( , )X Yf x y  in the previous example is 

 
2

, ,

2
2

2

( , ) ( , )

               [(1 )(1 )]   0, 0

               2     0, 0

X Y X Y

x y

x y

f x y F x y
x y

e e x y
x y

e e x y

 

 



 


    
 

  

 

 

Example3: The joint pdf of two random variables  X  and Y are given by 

, ( , )    0 2,  0 2

                0  otherwise

X Yf x y cxy x y    


 

(i) Find .c   

(ii) Find  ,   ( , )X yF x y  

(iii) Find     ( )Xf x  and    ( ).Yf y  

(iv) What is the probability  (0 1, 0 1)?P X Y      

   

   { } { } { }

( ) { } { , } ( , )
X XY

X x X x Y

F x P X x P X x Y F x

     

        
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2 2

,
0 0

y

,
0 0

2 2

2

0

( , )   

1

4

1
( , )   

4

                
16

( )  0 2     
4

              0 2     
2

Similarly

( )          0 2     
2

X Y

x

X Y

X

Y

f x y dydx c xydydx

c

F x y uvdudv

x y

xy
f x dy y

x
y

y
f y y

 

 


 





  

  

  

   

 



 

 

, , , ,

(0 1, 0 1)

                                      (1,1) (0, 0) (0,1) (1, 0)

1
                                        = 0 0 0

16

1
                                        =

16

X Y X Y X Y X Y

P X Y

F F F F

   

   

    

 

Conditional Distribution and Density functions 

 

We discussed conditional probability in an earlier lecture. For two events A and B with ( ) 0P B  , the 

conditional probability  /P A B was defined as 

    
 

 
/

P A B
P A B

P B


  

 
Clearly, the conditional probability can be defined on events involving a random variable X. 

 

Conditional distribution function 
 

Consider the event  X x and any event B involving the random variable X. The conditional 

distribution function of X given B is defined as 

 

 

   

 

 
 

/ /

0

XF x B P X x B

P X x B
P B

P B

   

    
 

Properties of Conditional distribution function 

 

We can verify that  /XF x B  satisfies all the properties of the distribution function. Particularly. 

  / 0XF B   and  / 1.XF B   

  0 / 1XF x B   
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  /XF x B  is a non-decreasing function of .x  

   
 1 2 2 1

2 1

( / ) ({ }/ ) ({ }/ )

                                ( / ) ( / )X X

P x X x B P X x B P X x B

F x B F x B

     

 
 

Conditional density function 

In a similar manner, we can define the conditional density function  /Xf x B of the random variable X 

given the event B as  

 

    / /X X

d
f x B F x B

dx
  

Properties of Conditional density function: 

 

All the properties of the pdf applies to the conditional pdf and we can easily show that 

  / 0Xf x B   

    / / 1X Xf x B dx F B





    

    / /

x

X XF x B f u B du


   

 

 

 
2

1

1 2 2 1( / ) ( / ) ( / )

                               /

X X

x

X

x

P x X x B F x B F x B

f x B dx

   

 
 

 Let (X, Y ) be a discrete bivariate random vector with joint pmf f(x, y) and marginal pmfs fX(x) and  

fY (y). For any x such that P(X = x) = fX(x) > 0, the conditional pmf of Y given that X = x is the function 

of y denoted by f(y|x) and defined by 

 
For any y such that P(Y = y) = fY (y) > 0, the conditional pmf of X given that Y = y is the function of x 

denoted by f(x|y) and defined by 

 

 
 

Example 1: Suppose X is a random variable with the distribution function  XF x . Define  B X b  . 

 
Then  

 
  

 

    
 

    
 

/X

X

P X x B
F x B

P B

P X x X b

P X b

P X x X b

F b

 


  




  


 

Case 1: x<b 
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Then 

 

 
    

 

  
 

 

 

/X

X

X

X X

P X x X b
F x B

F b

P X x F x

F b F b

  



 

 

 

And  
 

 

 

 
/

X X

X

X X

F x f xd
f x B

dx F b f b
   

 

Case 2: x b  

 

 
    

 

  
 

 

 

/

1

X

X

X

X X

P X x X b
F x B

F b

P X x F b

F b F b

  



  

 

 

 
 

and    / / 0X X

d
f x B F x B

dx
   

 

 /XF x B  and  /Xf x B are plotted in the following figures. 

 

 

 

 
 

 

 

 

b  x  

( )XF x  

( / )XF x B  
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Example 2   Suppose X  is a random variable with the distribution function  XF x and  B X b  . 

 

Then  

 
  

 

    
 

    
 

/

1

X

X

P X x B
F x B

P B

P X x X b

P X b

P X x X b

F b

 


  




  




 

For ,x b    { } .X x X b      Therefore, 

 

   / 0                 XF x B x b   

For ,x b    { } { }X x X b b X x       Therefore, 

 
  

 

   

 

/
1

              
1

X

X

X X

X

P b X x
F x B

F b

F x F b

F b

 









 

 
Thus, 

     

 

0                                               

/
                        otherwise

1

X X X

X

x b

F x B F x F b

F b




 
 

 

The corresponding pdf is given by 
 

b  x  

( )Xf x  

( / )Xf x B  
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   

 

0                                               

/
                                 otherwise

1

X X

X

x b

f x B f x

F b




 
 
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Example4: 
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Conditional Probability Distribution Function 

 
Consider two continuous jointly random variables and with the joint probability 

distribution function We are interested to find the conditional distribution function of 

one of the random variables on the condition of a particular value of the other random variable. 

 

We cannot define the conditional distribution function of the random variable on the 

condition of the event by the relation 

 

 

 

as in the above expression. The conditional distribution function is defined in the 

limiting sense as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conditional Probability Density Function 

 

is called the conditional probability density function of 

given 
 

Let us define the conditional distribution function . 

 
The conditional density is defined in the limiting sense as follows 
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Because, 
 

The right hand side of the highlighted equation is 

 

 

 

 

 

 

 

 

 
Similarly we have 

 

 

Two random variables are statistically independent if for all 
 

 
 

 

 

 

 

• 

 
Example 2 X and Y are two jointly random variables with the joint pdf given by 

 

 

 

find, 

(a) 

(b) 

(a)  
 

Solution: 
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Since 
 

We get 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Independent Random Variables (or) Statistical Independence 

 
Let and be two random variables characterized by the joint distribution function 

 

 

 
 

 

and the corresponding joint density function 

Then and are independent if and are independent events. 

Thus, 
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and equivalently 

 
Density function of Sum of Two Random Variables: 

 
We are often interested in finding out the probability density function of a function of two or 

more RVs. Following are a few examples. 

 

• The received signal by a communication receiver is given by 

 

 
 

where is received signal which is the superposition of the message signal and the noise . 

 

 

 

 

 

 

 

 

• The frequently applied operations on communication signals like modulation, 
demodulation, correlation etc. involve multiplication of two signals in the form Z = XY. 

 
We have to know about the probability distribution of in any analysis of . More formally, 

given two random variables X and Y with joint probability density function  and a 

function we have to find . 

In this lecture, we shall address this problem. 
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We consider the transformation 
 

Consider the event corresponding to each z. We can find a variable subset 

such that  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1 

 

 

 

 

 

 

 

 

 

 
Probability density function of Z = X + Y . 

Consider Figure 2 
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Figure 2 

 
 

We have 

 

 

 

 

 
Therefore, is the colored region in the Figure  
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OPERATIONS ON MULTIPLE RANDOM VARIABLES 

 
Expected Values of Functions of Random Variables 

 
Introduction: 

 

 In this Part of Unit we will see the concepts of expectation such as mean, variance, moments, 

characteristic function, Moment generating function on Multiple Random variables. We are already 

familiar with same operations on Single Random variable. This can be used as basic for our topics 

we are going to see on multiple random variables.  

 

Function of joint random variables: 

 

 If g(x,y) is a function of two random variables X and Y with joint density function fx,y(x,y) then the 

expected value of the function g(x,y) is given as  

        
 

 
 
Similarly, for N Random variables X1, X2, . . . XN With joint density function fx1,x2, . . . Xn(x1,x2, . . . 

xn), the expected value of the function g(x1,x2, . . . xn) is given as 

 

 
 

Properties : 

 

The properties of E(X) for continuous random variables are the same as for discrete ones:  

1. If X and Y are random variables on a sample space Ω 
 then E(X + Y ) = E(X) + E(Y ). (linearity I)  

                    

                        2. If a and b are constants then E(aX + b) = aE(X) + b.
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If is a function of a discrete random variable then 

 

Suppose  is a function of continuous random variables then the 

expected value of is given by 

 

 

 

 

 

 
Thus can be computed without explicitly determining . 

 

We can establish the above result as follows. 

 
Suppose has roots at . Then 

 

 

 
Where 

 

Is the differential region containing The mapping is illustrated in Figure 1 

for . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 
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Note that 

 

 

 

 

 

 

 

As is varied over the entire axis, the corresponding (non-overlapping) differential regions 

in  plane cover the entire plane. 

 

 

 

Thus, 

 

 

 

 

If is a function of discrete random variables , we can similarly show that 

 

 

 
Example 1 The joint pdf of two random variables is given by 
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Find the joint expectation of 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Example 2 If 
 

 

 

Proof: 

 

 

 

 

 

 

 

 

 

 
Thus, expectation is a linear operator. 

 

Example 3 

 
Consider the discrete random variables discussed in Example 4 in lecture 18.The 

joint probability mass function of the random variables are tabulated in Table . Find the joint 

expectation of . 
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Remark 

 

(1) We have earlier shown that expectation is a linear operator. We can generally write 

 

 

 

Thus 

(2) If are independent random variables and ,then 

 

 

 

 

 

 

 

 

 

 

Joint Moments of Random Variables 

 
Just like the moments of a random variable provide a summary description of the random 

variable, so also the joint moments provide summary description of two random variables. For 

two continuous random variables , the joint moment of order is defined as 

 

 

 

 
And the joint central moment of order is defined as 
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where and 
 

Remark 

(1) If are discrete random variables, the joint expectation of order and is 

defined as 

 

 

 

 

 

(2) If  and , we have the second-order moment of the random variables 

given by 

 

 

 

 
 

(3) If are independent, 
 

Covariance of two random variables 

 
The covariance of two random variables is defined as 

 

 

 

Cov(X, Y) is also denoted as . 

Expanding the right-hand side, we get 

 

 

 

 

 

 

The ratio is called the correlation coefficient. 
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If then are called positively correlated. 

If then are called negatively correlated 

If then are uncorrelated. 

We will also show that To establish the relation, we prove the following result: 

 
For two random variables 

Proof: 

 
Consider the random variable 

 

 
 

. 

 
Non-negativity of the left-hand side implies that its minimum also must be nonnegative. 

For the minimum value, 

 

so the corresponding minimum is 

 

 

 

 

 

 

 
Since the minimum is nonnegative, 

 

 

 

 

 

 
Now 
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Thus 

 

Uncorrelated random variables 

 
Two random variables are called uncorrelated if 

 

 

 

 

 
 

Recall that if are independent random variables, then 
 

 
 

 

 

 

 

 
 

then 

 
Thus two independent random variables are always uncorrelated. 

 
Note that independence implies uncorrelated. But uncorrelated generally does not imply 

independence (except for jointly Gaussian random variables). 

 

Joint Characteristic Functions of Two Random  Variables 

 
The joint characteristic function of two random variables X and Y is defined by 

 

 
If and are jointly continuous random variables, then 
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Note that  is same as the two-dimensional Fourier transform with the basis function 

instead of 

 
is related to the joint characteristic function by the Fourier inversion formula 

 

 

 

If and are discrete random variables, we can define the joint characteristic function in terms 

of the joint probability mass function as follows: 

 

 

 

 

 

 

 

Properties of the Joint Characteristic Function 

 
The joint characteristic function has properties similar to the properties of the chacteristic 

function of a single random variable. We can easily establish the following properties: 

 
1. 

2. 

3. If and are independent random variables, then 

 

 

 

 

 

 

 
4. We have, 
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Hence, 

 

 

 

 

 

 

 

 

 

 

In general, the order joint moment is given by 

 

 

 

 
 

Example 2 The joint characteristic function of the jointly Gaussian  random variables and 

with the joint pdf 

 

 

 

 

 

 
Let us recall the characteristic function of a Gaussian random variable 
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If and is jointly Gaussian, 

 

 

 

 

 

we can similarly show that 

 

 

 

 

 
We can use the joint characteristic functions to simplify the probabilistic analysis as illustrated 

on next page: 

 
 

Jointly Gaussian Random Variables 

 
Many practically occurring random variables are modeled as jointly Gaussian random variables. 
For example, noise samples at different instants in the communication system are modeled as 
jointly Gaussian random variables. 

 
Two random variables are called jointly Gaussian if their joint probability density 
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The joint pdf is determined by 5 parameters 

 
 means 

 variances 

 correlation coefficient 
 

We denote the jointly Gaussian random variables and with these parameters as 

 

 

The joint pdf has a bell shape centered at as shown in the Figure 1 below. The 

variances determine the spread of the pdf surface and determines the orientation 

of the surface in the  plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Jointly Gaussian PDF surface 

 

 

Properties of jointly Gaussian random variables 

 
(1) If and are jointly Gaussian, then and are both Gaussian. 
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We have 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Similarly 

 

 

 
 

(2) The converse of the above result is not true. If each of and is Gaussian, and are 

not necessarily jointly Gaussian. Suppose 
 

 

 
 

 

 

in this example is non-Gaussian and qualifies to be a joint pdf. Because, 

 

And 
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The marginal density is given by 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Similarly, 

 
Thus and are both Gaussian, but not jointly Gaussian. 

 
(3) If and are jointly Gaussian, then for any constants and ,the random variable 

given by   is Gaussian with mean and variance 

 
(4) Two jointly Gaussian RVs and   are independent if and only if and are 

uncorrelated .Observe that if  and are uncorrelated, then 

109



 
 

 

 

 

 

 

 

 
 

 

 

 

 

Example 1 Suppose X and Y are two jointly-Gaussian 0-mean random variables with variances 

of 1 and 4 respectively and a covariance of 1. Find the joint PDF 

 

 
 

 

 

 

 

 

 

 

 

 

We have 

 
 

Example 2 Linear transformation of two random variables 

 
Suppose then 

 

 

 
If and are jointly Gaussian, then 

 

 

 

 

 
 

Which is the characteristic function of a Gaussian random variable 

with mean and variance 
 

thus the linear transformation of two Gaussian random variables is a Gaussian random 
variable
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